Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 58]
|
|
|
Сложность: 3 Классы: 7,8,9,10
|
Два пирата делят 25 золотых монет разного достоинства, выложенные в виде квадрата 5×5. Пираты по очереди берут по одной монете с краю (монету можно взять, если слева, или справа, или снизу, или сверху от неё нет другой). Верно ли, что первый пират всегда может действовать так, чтобы гарантированно получить хотя бы половину суммарной добычи?
На плоскости отмечено 1968 точек, являющихся вершинами правильного
1968-угольника. Двое играют в следующую игру: каждый по очереди соединяет две
вершины многоугольника отрезком, соблюдая следующие правила: нельзя соединять
две точки, хотя бы одна из которых уже соединена с чем-то, и нельзя пересекать
уже проведённые отрезки. Проигрывает тот, кто не может сделать очередного хода
согласно этим правилам. Как нужно играть, чтобы выиграть?
Кто выигрывает при правильной игре?
Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.
|
[Игра "кошки-мышки"]
|
|
Сложность: 3 Классы: 7,8,9
|
Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?
|
|
|
Сложность: 3 Классы: 7,8,9
|
Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 58]