Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 79]
|
|
Сложность: 4 Классы: 6,7,8
|
а) В графе есть эйлеров путь. Доказать, что граф связен и вершин с нечётной степенью в нём не больше двух.
б) Доказать обратное: если в связном графе вершин с нечётной степенью не больше двух, то в нём есть эйлеров путь.
|
|
Сложность: 4 Классы: 10,11
|
В некоторой стране есть 100 городов, которые связаны такой сетью дорог, что из любого города в любой другой можно проехать только одним способом без разворотов. Схема сети дорог известна, развилки и перекрестки сети необязательно являются городами, всякая тупиковая ветвь сети обязательно заканчивается городом. Навигатор может измерить длину пути по этой сети между любыми двумя городами. Можно ли за 100 таких измерений гарантированно определить длину всей сети дорог?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В клетчатом квадрате между каждыми двумя соседними по стороне клетками есть закрытая дверь. Жук начинает с какой-то клетки и ходит по клеткам, проходя через двери. Закрытую дверь он открывает в ту сторону, в которую идёт, и оставляет дверь открытой. Через открытую дверь жук может пройти только в ту сторону, в которую дверь была открыта. Докажите, что если жук в какой-либо момент захочет вернуться в исходную клетку, то он сможет это сделать.
На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.
|
|
Сложность: 4 Классы: 8,9,10
|
В Швамбрании N городов, каждые два соединены дорогой. При этом дороги
сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над
другой). Злой волшебник устанавливает на всех дорогах одностороннее движение
таким образом, что если из города можно выехать, то в него нельзя вернуться.
Доказать, что
а) волшебник может это сделать;
б) найдётся город, из которого можно добраться до всех, и
найдётся город, из которого нельзя выехать;
в) существует единственный путь, обходящий все города;
г) волшебник может осуществить своё намерение N! способами.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 79]