Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 604]
Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону
квадрата, если катет треугольника равен a.
|
|
Сложность: 2+ Классы: 7,8,9
|
Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.
|
|
Сложность: 2+ Классы: 7,8,9
|
Дан квадрат ABCD. На стороне AD внутрь квадрата построен
равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что CE = CF.
На сторонах AC и BC треугольника ABC взяты точки C1 и C2. Докажите, что треугольник ABC равнобедренный, если треугольники ABC1 и BAC2 равны.
Докажите, что у равнобедренного треугольника:
а) биссектрисы, проведённые из вершин при основании, равны;
б) медианы, проведённые из тех же вершин, также равны.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 604]