Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 604]
Биссектрисы углов при одном основании трапеции пересекаются на другом её основании. Докажите, что второе основание равно сумме боковых сторон.
Медианы BB1 и CC1 треугольника ABC пересекаются в точке M. Известно, что AM ⊥ B1C1. Докажите, что треугольник ABC
равнобедренный.
Докажите, что:
a) против большей стороны треугольника лежит больший угол;
б) против большего угла треугольника лежит большая сторона.
Можно ли расположить на плоскости четыре точки А, В, С и D так, чтобы прямые АВ и CD, АС и BD, AD и ВС были перпендикулярны?
В треугольнике ABC биссектриса AK перпендикулярна медиане CL.
Докажите, что в треугольнике BKL также одна из биссектрис перпендикулярна одной из медиан.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 604]