ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 603]      



Задача 108955

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Биссектриса угла A треугольника ABC пересекает серединный перпендикуляр к стороне AB в точке X, серединный перпендикуляр к стороне AC – в точке Y, а описанную окружность треугольника – в точке Z. Точки A, X, Y и Z лежат на биссектрисе в порядке перечисления. Докажите, что  AX = YZ.

Прислать комментарий     Решение

Задача 109464

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.

Прислать комментарий     Решение

Задача 110805

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Дан равнобедренный треугольник ABC  (AB = AC).  На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что  BD = AB.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 110842

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9

Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Прислать комментарий     Решение

Задача 111463

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC угол при вершине B равен α. В точке C проведена касательная к описанной окружности этого треугольника, пересекающая продолжение биссектрисы BD угла B в точке E. Найдите отношение площади треугольника CDE к площади треугольника ABC.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .