Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 604]
Отрезки AM и BH – соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и 2∠MAC = ∠MCA. Найдите сторону BC.
Биссектриса угла A треугольника ABC пересекает серединный перпендикуляр к стороне AB в точке X, серединный перпендикуляр к стороне AC – в точке Y, а описанную окружность треугольника – в точке Z. Точки A, X, Y и Z лежат на биссектрисе в порядке перечисления. Докажите, что AX = YZ.
Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
Дан равнобедренный треугольник ABC (AB = AC). На продолжении стороны AC за точку C отложен отрезок CD, равный BC. Оказалось, что BD = AB.
Найдите углы треугольника ABC.
Окружность с центром на стороне AC равнобедренного треугольника ABC (AB = BC) касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно 3 : 8.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 604]