Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 604]
Вершины M и N равнобедренного треугольника BMN (BM = BN) лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что MN || AC.
Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.
Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.
Один из углов прямоугольной трапеции равен 120°, большее основание равно 12.
Найдите отрезок, соединяющий середины диагоналей, если известно, что меньшая диагональ трапеции равна её большему основанию.
Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании.
Найдите стороны трапеции, если её высота равна 12, а длины биссектрис равны 15 и 13.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 604]