ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 213]
Докажите, что площадь прямоугольного треугольника равна произведению длин отрезков, на которые гипотенуза делится точкой касания с вписанной окружностью.
В треугольнике KLM угол L тупой, а сторона KM равна 6. Найдите радиус описанной около треугольника KLM окружности, если известно, что на этой окружности лежит центр окружности, проходящей через вершины K, M и точку пересечения высот треугольника KLM.
Сторона AD вписанного четырёхугольника ABCD является диаметром описанной окружности, M — точка пересечения диагоналей, P — проекция M на AD. Докажите, что M — центр окружности, вписанной в треугольник BCP.
В остроугольном треугольнике PQR (PQ > QR) проведены высоты PT и RS ; QN — диаметр окружности, описанной около треугольника PQR . Известно, что острый угол между высотами PT и RS равен α , PR = a . Найдите площадь четырёхугольника NSQT .
В параллелограмме ABCD острый угол BAD равен
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 213]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке