ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 369]      



Задача 97918

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.

Прислать комментарий     Решение

Задача 98109

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8,9

Автор: Фомин С.В.

Квадрат 9×9 разбит на 81 единичную клетку. Некоторые клетки закрашены, причём расстояние между центрами каждых двух закрашенных клеток больше 2.
  а) Приведите пример раскраски, при которой закрашенных клеток 17.
  б) Докажите, что больше 17 закрашенных клеток быть не может.

Прислать комментарий     Решение

Задача 98595

Темы:   [ Делимость чисел. Общие свойства ]
[ Индукция (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Имеется много карточек, на каждой из которых записано натуральное число от 1 до n. Известно, что сумма чисел на всех карточках равна nk, где k – целое число. Докажите, что карточки можно разложить на k групп так, чтобы в каждой группе сумма чисел, записанных на карточках, равнялась n!.

Прислать комментарий     Решение

Задача 98602

Темы:   [ Последовательности (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое натуральное число входит в эту последовательность.

Прислать комментарий     Решение

Задача 109827

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 7,8,9,10

В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .