ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 222]
а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет. б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Докажите, что если для чисел a, b и c выполняются неравенства
| a - b|
Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?
Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если а) n = 4; б) n = 5?
Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 222]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке