Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 496]
Точки A, B, C и D последовательно расположены на окружности,
причём центр O окружности расположен внутри четырёхугольника ABCD.
Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что ∠KON + ∠MOL = 180°.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Докажите, что ломаная
AOC делит
ABCD на две
фигуры равной площади.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
P - точка пересечения диагоналей.
Известен радиус описанной окружности
R.
а) Найдите
AP2 +
BP2 +
CP2 +
DP2.
б) Найдите сумму квадратов сторон четырехугольника
ABCD.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
O - центр описанной окружности четырехугольника
ABCD.
P - точка пересечения диагоналей.
Найдите сумму квадратов диагоналей, если известны
длина отрезка
OP и радиус окружности
R.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
Из вершин
A и
B опущены перпендикуляры на
CD,
пересекающие прямые
BD и
AC в точках
K и
L соответственно.
Докажите, что
AKLB — ромб.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 496]