Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 496]
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
В выпуклом четырёхугольнике MNPQ диагональ NQ является
биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Найдите NS, если известно, что около четырёхугольника MNPQ можно описать окружность, PQ = 12, SQ = 9.
Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если AC = DC = 1.
Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Найдите AC, если CE = 3 и DE = DC.
В окружность вписан четырёхугольник ABCD. На дуге AD, не
содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K
соответственно на стороны AD, BC, AB и CD (или на продолжения
этих сторон). Известно, что KP = d, а
SNQK = mSMPK. Найдите KN.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 496]