ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 239]      



Задача 55368

Темы:   [ Параллелограмм Вариньона ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Точки M, K, N и L - середины сторон AB, BC, CD и DE пятиугольника ABCDE(не обязательно выпуклого), P и Q - середины отрезков MN и KL. Докажите, что отрезок PQ в четыре раза меньше стороны AE и параллелен ей.

Прислать комментарий     Решение


Задача 55379

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3+
Классы: 8,9

Проведены четыре радиуса OA, OB, OC и OD окружности с центром O. Докажите, что если $ \overrightarrow{OA} $ + $ \overrightarrow{OB} $ + $ \overrightarrow{OC} $ + $ \overrightarrow{OD} $ = $ \overrightarrow{0}$, то ABCD — прямоугольник.

Прислать комментарий     Решение


Задача 78545

Темы:   [ Неравенства с векторами ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 10,11

Из точки O на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.
Прислать комментарий     Решение


Задача 108552

Темы:   [ Метод координат на плоскости ]
[ Скалярное произведение. Соотношения ]
Сложность: 3+
Классы: 8,9

Докажите, что прямые, заданные уравнениями y = k1x + l1 и y = k2x + l2 и не параллельные координатным осям, перпендикулярны тогда и только тогда, когда k1k2 = - 1.

Прислать комментарий     Решение


Задача 55360

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC и точка M. Известно, что $ \overrightarrow{MA} $ + $ \overrightarrow{MB} $ + $ \overrightarrow{MC} $ = $ \overrightarrow{0}$. Докажите, что M — точка пересечения медиан треугольника ABC.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .