ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь – дважды". – "А теперь – трижды", – сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно подсчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 241]      



Задача 97770

Темы:   [ Теория игр (прочее) ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9,10

Автор: Фольклор

Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну овцу?

Прислать комментарий     Решение

Задача 98005

Темы:   [ Правильные многоугольники ]
[ Метод усреднения ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 9,10

Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.

Прислать комментарий     Решение

Задача 108112

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9

Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа  a1, a2, ..., an,  что
a1 > a2 > ... > an > 0.  Докажите, что линейная комбинация векторов     отлична от нулевого вектора.

Прислать комментарий     Решение

Задача 108252

Темы:   [ Векторы (прочее) ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 4
Классы: 8,9

Найдите наименьшую возможную длину суммы семи единичных векторов с неотрицательными координатами на плоскости Oxy .
Прислать комментарий     Решение


Задача 115595

Темы:   [ Неравенства с медианами ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .