ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 105127

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9

Пусть a, b, c – стороны треугольника. Докажите неравенство  a³ + b³ + 3abc > c³.

Прислать комментарий     Решение

Задача 32893

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Про положительные числа a, b, c, d, e известно, что  a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
Докажите, что среди этих чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

Прислать комментарий     Решение

Задача 110207

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Прислать комментарий     Решение

Задача 79421

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3+
Классы: 11

а) a, b, c — длины сторон треугольника. Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0.
б) Доказать, что a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2) + a2bc + b2ac + c2ab ≥ 0 для любых неотрицательных a, b, c.
Прислать комментарий     Решение


Задача 64715

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Теорема косинусов ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Дано n палочек. Из любых трёх можно сложить тупоугольный треугольник. Каково наибольшее возможное значение n?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .