Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 5 Классы: 8,9,10,11
|
На координатной плоскости дан выпуклый пятиугольник
ABCDE с вершинами в целых точках. Докажите, что внутри или на границе
пятиугольника
A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых
не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
|
|
Сложность: 5+ Классы: 9,10,11
|
Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода
обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.
Страница:
<< 1 2 [Всего задач: 9]