ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 58293

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5
Классы: 7,8,9

Точка O, лежащая внутри выпуклого многоугольника A1...An, обладает тем свойством, что любая прямая OAi содержит еще одну вершину Aj. Докажите, что кроме точки O никакая другая точка не обладает этим свойством.
Прислать комментарий     Решение


Задача 58294

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5+
Классы: 7,8,9

На окружности отметили 4n точек и окрасили их через одну в красный и синий цвета. Точки каждого цвета разбили на пары, а точки каждой пары соединили отрезками того же цвета. Докажите, что если никакие три отрезка не пересекаются в одной точке, то найдется по крайней мере n точек пересечения красных отрезков с синими.
Прислать комментарий     Решение


Задача 58295

Тема:   [ Системы отрезков, прямых и окружностей ]
Сложность: 5+
Классы: 7,8,9

На плоскости расположено n$ \ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.
Прислать комментарий     Решение


Задача 73689

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 6+
Классы: 8,9,10

На прямой дано 50 отрезков. Докажите, что верно хотя бы одно из следующих утверждений:

  • некоторые 8 из этих отрезков имеют общую точку;
  • некоторые 8 из этих отрезков таковы, что никакие два из них не пересекаются.
Прислать комментарий     Решение

Задача 109732

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 9,10,11

На плоскости даны два таких конечных набора P1 и P2 выпуклых многоугольников, что любые два многоугольника из разных наборов имеют общую точку и в каждом из двух наборов P1 и P2 есть пара непересекающихся многоугольников. Докажите, что существует прямая, пересекающая все многоугольники обоих наборов.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .