Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1036]
|
|
Сложность: 4- Классы: 8,9,10
|
Существуют ли три попарно различных ненулевых целых
числа, сумма которых равна нулю, а сумма тринадцатых
степеней которых является квадратом некоторого натурального числа?
|
|
Сложность: 4- Классы: 10,11
|
Укажите такое шестизначное число N, состоящее из различных цифр, что
числа 2N, 3N, 4N, 5N, 6N отличаются от него перестановкой цифр.
Существует ли треугольник, все высоты которого меньше 1,
а площадь больше или равна 10?
Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.)
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 1036]