Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1036]
|
|
Сложность: 3+ Классы: 10,11
|
Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100?
|
|
Сложность: 3+ Классы: 7,8,9
|
Палиндром – это натуральное число, которое читается одинаково слева направо и справа налево (например, 1, 343 и 2002 палиндромы).
Найдутся ли 2005 пар вида (n, n + 110), где оба числа – палиндромы?
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что можно найти такие 100 пар целых чисел так, что в десятичной записи каждого числа все цифры не меньше 6 и произведение чисел каждой пары – тоже число, где все цифры не меньше 6.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?
Фермер огородил снаружи участок земли и разделил его на треугольники со стороной 50 м. В некоторых треугольниках он высадил капусту, а в некоторые пустил пастись коз. Помогите фермеру построить по линиям сетки дополнительные заборы как можно меньшей общей длины, чтобы защитить всю капусту от коз.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1036]