Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 1027]
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что можно найти такие 100 пар целых чисел так, что в десятичной записи каждого числа все цифры не меньше 6 и произведение чисел каждой пары – тоже число, где все цифры не меньше 6.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?
Фермер огородил снаружи участок земли и разделил его на треугольники со стороной 50 м. В некоторых треугольниках он высадил капусту, а в некоторые пустил пастись коз. Помогите фермеру построить по линиям сетки дополнительные заборы как можно меньшей общей длины, чтобы защитить всю капусту от коз.
Таня вырезала из бумаги выпуклый многоугольник и несколько раз его согнула так, что получился двухслойный четырёхугольник.
Мог ли вырезанный многоугольник быть семиугольником?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На столе лежат 8 всевозможных горизонтальных полосок $1\times3$ из трёх квадратиков $1\times1$, каждый из которых либо белый, либо серый (см. рисунок).
Разрешается переносить полоски в любых направлениях на любые (не обязательно целые) расстояния, не поворачивая и не переворачивая. Можно ли расположить полоски на столе так, чтобы все белые точки образовали многоугольник, ограниченный замкнутой несамопересекающейся ломаной, и все серые – тоже? (Полоски не должны перекрываться.)
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 1027]