Страница:
<< 15 16 17 18 19
20 21 >> [Всего задач: 105]
Через центр O описанной окружности остроугольного треугольника ABC, проведена прямая, перпендикулярная BO и пересекающая отрезок AB в точке P и продолжение отрезка BC за точку C в точке Q. Найдите BP, если известно, что AB = c, BC = a и BQ = p.
Дана окружность и две неравные параллельные хорды. Используя
только линейку, разделите эти хорды пополам.
|
|
Сложность: 4- Классы: 8,9,10
|
В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Докажите, что ∠IMA = ∠INB.
|
|
Сложность: 4 Классы: 7,8,9
|
Окружность пересекает сторону AB треугольника ABC в точках С1, С2, сторону BС – в точках A1, A2, сторону СA – в точках B1, B2. Известно, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С1, B1, A1, пересекаются в одной точке. Докажите, что перпендикуляры к сторонам AB, BC, CA, восставленные соответственно в точках С2, B2, A2, также пересекаются в одной точке.
Четырёхугольник
ABCD вписан в окружность
S с
центром
O . Биссектриса угла
ABD пересекает
сторону
AD и окружность
S в точках
K и
M
соответственно. Биссектриса угла
CBD пересекает
сторону
CD и окружность
S в точках
L и
N
соответственно. Известно, что прямые
KL и
MN
параллельны. Докажите, что описанная окружность
треугольника
MON проходит через середину отрезка
BD .
Страница:
<< 15 16 17 18 19
20 21 >> [Всего задач: 105]