ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 306]
Хорды AC и BD окружности пересекаются в точке P . Перпендикуляры к AC и BD , восставленные в точках C и D соответственно, пересекаются в точке Q . Докажите, что прямые AB и PQ перпендикулярны.
В трапеции ABCD боковая сторона CD перпендикулярна основаниям, O – точка пересечения диагоналей. На описанной окружности треугольника OCD взята точка S, диаметрально противоположная точке O. Докажите, что ∠BSC = ∠ASD.
Внутри треугольника ABC взята точка M, причём
Диагональ BD трапеции ABCD равна m, а боковая сторона AD равна n. Найдите основание CD, если известно, что основание, диагональ и боковая сторона трапеции, выходящие из вершины C, равны между собой.
В выпуклом четырёхугольнике ABCD угол
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке