Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 306]      



Задача 53659

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Трапеции (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Дана прямоугольная трапеция ABCD, в которой  ∠C = ∠B = 90°.  На стороне AD как на диаметре построена окружность, которая пересекает сторону BC в точках M и N. Докажите, что  BM·MC = AB·CD.

Прислать комментарий     Решение

Задача 53678

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Радиус окружности, описанной около равнобедренного треугольника, равен R. Угол при основании равен $ \alpha$. Найдите стороны треугольника.

Прислать комментарий     Решение


Задача 53706

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Отношение площадей подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Точка M, лежащая вне круга с диаметром AB, соединена с точками A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник CMD. Найдите углы треугольника AMB, если известно, что один из них в два раза больше другого.

Прислать комментарий     Решение

Задача 54064

Тема:   [ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Точка A лежит на окружности. Найдите геометрическое место таких точек M, что отрезок AM делится этой окружностью пополам.

Прислать комментарий     Решение


Задача 54374

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На окружности по разные стороны от диаметра AC расположены точки B и D. Известно, что  AB = CD = 1,  а площадь треугольника ABC втрое больше площади треугольника BCD. Найдите радиус окружности.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 306]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .