ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Докажите, что  [n + m]!  делится на произведение [n]!·[m]!.

Вниз   Решение


На прозрачной бумаге нарисован треугольник. Без всяких инструментов постройте центр его описанной окружности.

ВверхВниз   Решение


Исследуйте последовательности на сходимость:
а) xn + 1 = $ {\dfrac{1}{1+x_n}}$,    x0 = 1;
б) xn + 1 = sin xn,     x0 = a $ \in$ (0;$ \pi$);
в) xn + 1 = $ \sqrt{a+x}$,    a > 0, x0 = 0.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 54959

Темы:   [ Признаки и свойства параллелограмма ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 8,9

Из середины основания треугольника проведены прямые, параллельные боковым сторонам. Докажите, что площадь полученного таким образом параллелограмма равна половине площади треугольника.

Прислать комментарий     Решение


Задача 111439

Темы:   [ Теорема косинусов ]
[ Площадь параллелограмма ]
[ Площадь четырехугольника ]
Сложность: 3
Классы: 8,9

Стороны параллелограмма равны a и b , а острый угол между диагоналями равен α . Найдите площадь параллелограмма.
Прислать комментарий     Решение


Задача 111634

Темы:   [ Параллелограмм Вариньона ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 8,9

Докажите, что все выпуклые четырёхугольники, имеющие общие середины сторон, равновелики.
Прислать комментарий     Решение


Задача 54313

Темы:   [ Признаки и свойства параллелограмма ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD угол BAD равен 60o, а сторона AB равна 3. Биссектриса угла A пересекает сторону BC в точке E. Найдите площадь треугольника ABE.

Прислать комментарий     Решение


Задача 54963

Темы:   [ Параллелограмм Вариньона ]
[ Площадь параллелограмма ]
Сложность: 3
Классы: 8,9

Площадь данного выпуклого четырёхугольника равна S. Найдите площадь четырёхугольника с вершинами в серединах сторон данного.

Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .