Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 222]
|
|
Сложность: 3+ Классы: 9,10
|
Семь школьников решили за воскресенье обойти семь кинотеатров. Во всех них
сеансы начинаются в 9.00, 10.40, 12.20, 14.00, 15.40, 17.20, 19.00
и 20.40 (8 сеансов). На каждый сеанс шестеро шли вместе, а кто-нибудь один
(не обязательно один и тот же) шел в другой кинотеатр. К вечеру каждый побывал
в каждом кинотеатре. Докажите, что в каждом кинотеатре был сеанс, на котором не
был ни один из этих школьников.
|
|
Сложность: 3+ Классы: 6,7,8
|
На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?
|
|
Сложность: 4- Классы: 8,9,10,11
|
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:
а) на каждом маршруте есть ровно три остановки;
б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.
Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол 2πk/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Докажите, что найдётся новая дуга, которая целиком лежит в одной из старых дуг. (Считается, что концы дуги ей принадлежат.)
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 222]