ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 2]      



Задача 98376

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
[ Барицентрические координаты ]
Сложность: 5
Классы: 8,9,10

Каждая сторона правильного треугольника разбита на n равных отрезков, и через все точки деления проведены прямые, параллельные сторонам. Данный треугольник разбился на n² маленьких треугольников-клеток. Треугольники, расположенные между двумя соседними параллельными прямыми, образуют полоску.
  а) Какое наибольшее число клеток можно отметить, чтобы никакие две отмеченные клетки не принадлежали одной полоске ни по одному из трёх направлений, если  n = 10?
  б) Тот же вопрос для  n = 9.

Прислать комментарий     Решение

Задача 66251

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, вписанная в тетраэдр ]
[ Поворот и винтовое движение ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Касательные к сферам ]
[ Вспомогательные подобные треугольники ]
[ ГМТ в пространстве (прочее) ]
[ Барицентрические координаты ]
[ Средняя линия треугольника ]
[ Неравенство треугольника (прочее) ]
Сложность: 5
Классы: 10,11

В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .