ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 [Всего задач: 17]      



Задача 35718

Темы:   [ Выигрышные и проигрышные позиции ]
[ Парадоксы ]
Сложность: 3+
Классы: 9,10,11

Выписаны в ряд числа от 1 до 2002. Играют двое, делая ходы поочередно. За один ход разрешается вычеркнуть любое из записанных чисел вместе со всеми его делителями. Выигрывает тот, кто зачеркнёт последнее число. Докажите, что у первого игрока есть способ играть так, чтобы всегда выигрывать.
Прислать комментарий     Решение


Задача 110007

Темы:   [ Объединение, пересечение и разность множеств ]
[ Необычные конструкции ]
[ Парадоксы ]
Сложность: 4
Классы: 8,9,10

Каждый голосующий на выборах вносит в избирательный бюллетень фамилии n кандидатов. На избирательном участке находится n+1 урна. После выборов выяснилось, что в каждой урне лежит по крайней мере один бюллетень и при всяком выборе (n+1) -го бюллетеня по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .