Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 276]      



Задача 67428

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 7,8,9,10,11

Автор: Дидин М.

Петя загадал положительную несократимую дробь $x = \frac{m}{n}$. Можно назвать положительную дробь $y$, меньшую $1$, и Петя назовёт числитель несократимой дроби, равной сумме $x+y$. Как за два таких действия гарантированно узнать $x$?
Прислать комментарий     Решение


Задача 78829

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Подсчет двумя способами ]
[ Правило произведения ]
Сложность: 4
Классы: 7,8,9

Пусть K(x) равно числу таких несократимых дробей a/b, что  a < x  и  b < x  (a и b – натуральные числа). Например,  K(5/2) = 3  (дроби 1, 2, ½).
Вычислить сумму  K(100) + K(100/2) + K(100/3) + ... + K(100/99) + K(100/100).

Прислать комментарий     Решение

Задача 79464

Темы:   [ Последовательности (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 11

В некотором царстве, в некотором государстве было выпущено неограниченное количество монет достоинством в n1, n2, n3, ... копеек, где
n1 < n < 2 < n3 < ...  – бесконечная последовательность, состоящая из натуральных чисел. Докажите, что эту последовательность можно оборвать, то есть найдётся такое число N, что любую сумму, которую можно уплатить без сдачи выпущенными монетами, на самом деле можно уплатить только монетами достоинством в n1, n2, ..., nN копеек.

Прислать комментарий     Решение

Задача 98253

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 4
Классы: 8,9

а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

Прислать комментарий     Решение

Задача 98410

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 7,8

Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 276]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .