Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 275]
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите все такие натуральные числа n, что для любых двух его взаимно
простых делителей a и b число a + b – 1 также является делителем n.
|
|
Сложность: 3- Классы: 5,6,7
|
В классе учится меньше 50 школьников. За контрольную работу седьмая часть учеников получила пятёрки, третья – четвёрки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько было таких работ?
|
|
Сложность: 3- Классы: 7,8,9
|
Назовём натуральное семизначное число удачным, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
|
|
Сложность: 3 Классы: 7,8,9
|
Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка.
Сколько раз за сутки все три стрелки на таких часах совпадут?
Последняя цифра в записи натурального числа в 2016 раз меньше самого числа. Найдите все такие числа.
Страница:
<< 41 42 43 44
45 46 47 >> [Всего задач: 275]