Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 126]
|
|
Сложность: 3+ Классы: 7,8,9
|
Незнайка написал на доске несколько различных натуральных чисел и
поделил (в уме) сумму этих чисел на их произведение. После этого Незнайка
стёр самое маленькое число и поделил (опять в уме) сумму оставшихся чисел на
их произведение. Второй результат оказался в 3 раза больше первого. Какое
число Незнайка стёр?
|
|
Сложность: 3+ Классы: 7,8,9
|
Вася постоял некоторое время на остановке. За это время проехал один автобус и два трамвая. Через некоторое время на эту же остановку пришёл Шпион. Пока он там сидел, проехало 10 автобусов. Какое минимальное число трамваев могло проехать за это время? И автобусы, и трамваи ходят с равными интервалами, причём автобусы ходят с интервалом 1 час.
В некоторой школе более 90% учеников знают английский и немецкий языки, и более 90% учеников знают английский и французский языки.
Докажите, что среди учеников, знающих немецкий и французский языки, более 90% знают английский язык.
Замените в равенстве ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Говорящие весы произносят вес, округлив его до целого числа килограммов (по правилам округления: если дробная часть меньше 0,5, то число округляется вниз, а иначе – вверх; например, 3,5 округляется до 4). Вася утверждает, что, взвешиваясь на этих весах с одинаковыми бутылками, он получил такие ответы весов:
Могло ли такое быть?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 126]