ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 112]      



Задача 60593

 [Фибоначчиевы коэффициенты]
Темы:   [ Числа Фибоначчи ]
[ Рекуррентные соотношения (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 9,10,11

              1              
            1   1            
          1   1   1          
        1   2   2   1        
      1   3   6   3   1      
    1   5   15   15   5   1    
  1   8   40   60   40   8   1  
1   13   104   260   260   104   13   1

Данная таблица аналогична треугольнику Паскаля и состоит из фибоначчиевых коэффициентов     определяемых равенством

  а) Докажите, что фибоначчиевы коэффициенты обладают свойством симметрии  

  б) Найдите формулу, которая выражает коэффициент     через     и     (аналогичную равенству б) из задачи 60413).

  в) Объясните, почему все фибоначчиевы коэффициенты являются целыми числами.

Прислать комментарий     Решение

Задача 61101

Темы:   [ Многочлены Чебышева ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу 61099.

Прислать комментарий     Решение

Задача 78515

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

Последовательность a0, a1, a2, ... образована по закону:  a0 = a1 = 1,  an+1 = anan–1 + 1.  Доказать, что число a1964 не делится на 4.

Прислать комментарий     Решение

Задача 98189

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 6,7,8

В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д.
  а) Докажите, что все строчки, начиная с некоторой – нулевые (состоят из сплошных нулей).
  б) Каково максимально возможное число ненулевых строчек (содержащих хотя бы одно число, отличное от нуля)?

Прислать комментарий     Решение

Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .