ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1125]      



Задача 88183

Темы:   [ Задачи на проценты и отношения ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 5,6,7

В классе учится меньше 50 школьников. За контрольную работу седьмая часть учеников получила пятёрки, третья – четвёрки, половина – тройки. Остальные работы были оценены как неудовлетворительные. Сколько было таких работ?

Прислать комментарий     Решение

Задача 88249

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 5,6,7

Король сказал королеве:
  – Сейчас мне вдвое больше лет, чем было вам тогда, когда мне было столько лет, сколько вам теперь. Когда же вам будет столько лет, сколько мне теперь, нам вместе будет 63 года.
Интересно, сколько лет каждому из них?

Прислать комментарий     Решение

Задача 88299

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 7,8

Давным-давно девять одинаковых книг стоили 11 рублей с копейками, а тринадцать таких книг стоили 15 рублей с копейками.
Сколько стоила одна книга?

Прислать комментарий     Решение

Задача 97829

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9

Автор: Фомин С.В.

175 шалтаев стоят дороже, чем 125 болтаев, но дешевле, чем 126 болтаев. Доказать, что на покупку трёх шалтаев и одного болтая не хватит:
  а)  80 коп.;
  б)  одного рубля.

Прислать комментарий     Решение

Задача 98378

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .