Страница: << 98 99 100 101 102 103 104 >> [Всего задач: 1113]
Несколько спортсменов стартовали одновременно с одного и того же конца
прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца
дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем
разворачивается на другом конце, и т.д. В какой-то момент все спортсмены
снова оказались в одной точке. Докажите, что такие встречи всех будут
продолжаться и впредь.
|
|
Сложность: 3+ Классы: 7,8,9
|
На шахматной доске 100×100 расставлено 100 не бьющих друг друга ферзей.
Докажите, что в каждом угловом квадрате 50×50 находится хотя бы один
ферзь.
|
|
Сложность: 3+ Классы: 7,8,9
|
От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.
|
|
Сложность: 3+ Классы: 7,8,9
|
На каждом из двух огородов Дед посадил по одинаковому количеству репок. Если в огород заходит Внучка, то она выдергивает ровно ⅓ репок, имеющихся к этому моменту. Если заходит Жучка, то она выдергивает 1/7 репок, а если заходит Мышка, то она выдергивает только 1/12 репок. К концу недели на первом огороде осталось 7 репок, а на втором – 4. Заходила ли Жучка во второй огород?
|
|
Сложность: 3+ Классы: 7,8,9
|
На доске написано:
В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3.
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.
Страница: << 98 99 100 101 102 103 104 >> [Всего задач: 1113]