ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 1110]      



Задача 115356

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

В клетки квадрата 100×100 расставили числа 1, 2, ..., 10000, каждое – по одному разу; при этом числа, различающиеся на 1, записаны в соседних по стороне клетках. После этого посчитали расстояния между центрами каждых двух клеток, числа в которых различаются ровно на 5000. Пусть S – минимальное из этих расстояний. Какое наибольшее значение может принимать S?

Прислать комментарий     Решение

Задача 116213

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 7,8,9

Автор: Bapat R.B.

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна a,
а в каждом столбце сумма двух наибольших чисел равна b. Докажите, что  a = b.

Прислать комментарий     Решение

Задача 116229

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Bapat R.B.

В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма k наибольших чисел равна a, а в каждом столбце таблицы сумма k наибольших чисел равна b.
  а) Докажите, что если  k = 2,  то  a = b.
  б) В случае  k = 3  приведите пример такой таблицы, для которой  a ≠ b.

Прислать комментарий     Решение

Задача 78628

Темы:   [ Числовые таблицы и их свойства ]
[ НОД и НОК. Взаимная простота ]
[ Перестановки и подстановки (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Дана таблица n×n клеток и такие натуральные числа k и  m > k,  что m и  n – k  взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа  a1, ..., ak, ak+1, ..., am, am+1, ..., an.  Тогда в следующей строчке записываются те же числа, но в таком порядке:  am+1, ..., an, ak+1, ..., am, a1, ..., ak.  В первую строчку записываются (по порядку) числа  1, 2, ..., n.  Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.

Прислать комментарий     Решение

Задача 73550

Темы:   [ Числовые таблицы и их свойства ]
[ Теория графов (прочее) ]
Сложность: 5-
Классы: 8,9,10

Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке.

Прислать комментарий     Решение

Страница: << 145 146 147 148 149 150 151 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .