Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 1110]
|
|
Сложность: 4+ Классы: 8,9,10
|
В квадрате 3×3 расставлены числа (см. рис.). Известно, что
квадрат магический: сумма чисел в каждом столбце, в каждой строке и на каждой
диагонали одна и та же. Докажите, что
а) 2(a + c + g + i) = b + d + f + h + 4e.
б) 2(a³ + c³ + g³ + i³) = b³ + d³ + f ³ + h³ + 4e³.
|
|
Сложность: 4+ Классы: 8,9,10
|
Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
В клетках таблицы 2000×2000 записаны числа 1 и –1. Известно, что сумма всех чисел в таблице неотрицательна. Докажите, что найдутся 1000 строк и 1000 столбцов таблицы, для которых сумма чисел, записанных в клетках, находящихся на их пересечении, не меньше 1000.
|
|
Сложность: 4+ Классы: 9,10,11
|
В магическом квадрате n×n, составленном из чисел 1, 2, ..., n², центры каждых двух клеток соединили вектором в направлении от большего числа к меньшему. Докажите, что сумма всех полученных векторов равна нулю. (Магическим называется клетчатый квадрат, в клетках которого записаны
числа так, что суммы чисел во всех его строках и столбцах равны.)
|
|
Сложность: 4+ Классы: 8,9,10
|
В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?
Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 1110]