|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что объём конуса равен третьей части произведения боковой поверхности на расстояние от центра основания до образующей. В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке. |
Страница: 1 [Всего задач: 2]
Числа p и q таковы, что параболы y = – 2x² и y = x² + px + q пересекаются в двух точках, ограничивая некоторую фигуру.
Вычислите $$\int \limits_0^{\pi} \big(|\sin(1999x)|-|\sin(2000x)|\big) \, dx.$$
Страница: 1 [Всего задач: 2] |
||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|