Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 107]
|
|
Сложность: 4 Классы: 10,11
|
Основание прямой треугольной призмы
ABCA1
B1
C1
–
равнобедренный прямоугольный треугольник с катетами
AC = BC = a .
Вершины
M и
N правильного тетраэдра
MNPQ лежат на прямой
CA1
,
а вершины
P и
Q – на прямой
AB1
. Найдите:
а) объём призмы;
б) расстояние между серединами отрезков
MN и
PQ .
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания правильной треугольной призмы
ABCA1
B1
C1
равна
a . Вершины
M и
N правильного тетраэдра
MNPQ лежат на прямой,
проходящей через точки
C1
и
B , а вершины
P и
Q – на прямой
A1
C . Найдите:
а) объём призмы;
б) расстояние между серединами отрезков
MN и
PQ .
|
|
Сложность: 4 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1
B1
C1
D1
рёбра
AB ,
BC и
BB1
равны соответственно
2
a ,
a и
a , а точка
E – середина
BC . Вершины
M и
N правильного тетраэдра
MNPQ лежат на прямой
C1
E , а вершины
P и
Q – на прямой,
проходящей через точку
B1
и пересекающей прямую
AD в точке
F .
Найдите:
а) отрезок
DF ;
б) расстояние между серединами отрезков
MN и
PQ .
|
|
Сложность: 4 Классы: 10,11
|
Длина ребра правильного тетраэдра
ABCD равна
a . Точка
E – середина ребра
CD , точка
F – середина высоты
BL грани
ABD . Отрезок
MN с концами на прямых
AD и
BC пересекает прямую
EF и перпендикулярен ей. Найдите длину
этого отрезка.
|
|
Сложность: 4 Классы: 10,11
|
Сфера вписана в правильную треугольную пирамиду
SABC (
S –
вершина), а также вписана в прямую треугольную призму
KLMK1
L1
M1
,
у которой
KL=KM= , а боковое ребро
KK1
лежит на прямой
AB .
Найдите радиус сферы, если известно, что прямая
SC параллельна
плоскости
LL1
M1
M .
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 107]