ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 [Всего задач: 79]      



Задача 110074

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Автор: Храбров А.

Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?

Прислать комментарий     Решение

Задача 115406

Темы:   [ Тригонометрические неравенства ]
[ Тригонометрический круг ]
[ Количество и сумма делителей числа ]
Сложность: 4
Классы: 10,11

Автор: Трушин Б.

Сколько раз функция   f(x) = cos x cos x/2 cos x/3 ... cos x/2009   меняет знак на отрезке  [0, 2009π/2] ?

Прислать комментарий     Решение

Задача 35071

Темы:   [ НОД и НОК. Взаимная простота ]
[ Правило произведения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?

Прислать комментарий     Решение

Задача 88282

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 3+
Классы: 6,7,8

В небольшом шотландском городке стояла школа, в которой учились ровно 1000 школьников. У каждого из них был шкаф для одежды – всего 1000 шкафов, причём шкафы были пронумерованы числами о 1 до 1000. А ещё в этой школе жили привидения – ровно 1000 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала первое привидение открыло все шкафы; потом второе привидение закрыло те шкафы, номер которых делился на 2; затем третье привидение поменяло позиции (то есть открыло шкаф, если он был закрыт, и закрыло – если он был открыт) тех шкафов, номер которых делился на 3; следом за ним четвёртое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т.д. Как только тысячное привидение поменяло позицию тысячного шкафа, пропел петух, и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .