Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 517]
Пусть M и N – точки пересечения медиан граней ABD и BCD тетраэдра ABCD. Найдите MN, если известно, что AC = a.
Высота прямоугольного треугольника, опущенная на его гипотенузу, делит
биссектрису острого угла в отношении 4 : 3, считая от вершины.
Найдите величину этого угла.
Точка Q расположена на стороне MN треугольника LMN так, что NQ : QM = 1 : 2. При повороте этого треугольника на некоторый угол вокруг точки Q вершина L переходит в вершину N, а вершина M – в точку P, лежащую на продолжении стороны LM за точку L. Найдите углы треугольника LMN.
При повороте треугольника KLM на угол 120° вокруг
точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ.
Точка O расположена на стороне AC треугольника ABC так, что CO : CA = 2 : 3. При повороте этого треугольника на некоторый угол вокруг точки O вершина B переходит в вершину C, а вершина A – в точку D, лежащую на стороне AB. Найдите отношение площадей треугольников BOD и ABC.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 517]