ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 235]      



Задача 30920

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7

a, b, c – натуральные числа и  1/a + 1/b + 1/c < 1.  Докажите, что  1/a + 1/b + 1/c41/42.

Прислать комментарий     Решение

Задача 35551

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичные дроби (прочее) ]
Сложность: 3+
Классы: 10,11

Найдите первые 99 знаков после запятой в разложении числа   .

Прислать комментарий     Решение

Задача 60610

 [Юлианский календарь]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
Сложность: 3+
Классы: 9,10,11

Из астрономии известно, что год имеет  365,2420... = [365; 4, 7, 1, 3,...]  так называемых "календарных суток". В Юлианском стиле каждый четвёртый год – високосный, то есть состоит из 366 дней. За сколько лет при таком календаре накапливается ошибка в одни сутки? На сколько дней отстает Юлианский календарь за 1000 лет? И вообще, почему он отстает, если юлианский год длиннее астрономического?

Прислать комментарий     Решение

Задача 60617

Темы:   [ Приближения чисел ]
[ Цепные (непрерывные) дроби ]
Сложность: 3+
Классы: 9,10,11

Найдите рациональное число, которое отличается от числа
  а)  α = ;   б)  α = 2 + ;   в)  α = 3 +   не более чем на 0,0001.

Прислать комментарий     Решение

Задача 60620

 [Теорема Валена]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Докажите, что если  Pn/Qn  (n ≥ 1)  – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств     или     Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что  |α – p/q| < 1/2q2.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .