|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ точка $D$ – основание высоты из вершины $A$, $A'$ – точка описанной окружности, диаметрально противоположная $A$. На отрезке $AD$ выбрана точка $P$, а на отрезках $AB$ и $AC$ точки $X$ и $Y$ так, что $\angle CBP=\angle ADY$, $\angle BCP=\angle ADX$. Пусть $PA'$ пересекает $BC$ в точке $T$. Докажите, что $D$, $X$, $Y$, $T$ лежат на одной окружности. |
Задача 55397
УсловиеНа сторонах BC и CD квадрата ABCD взяты точки E и F, причём ∠EAF = 45°. Отрезки AE и AF пересекают диагональ BD в точках P и Q. ПодсказкаДокажите, что EP и EQ – высоты треугольника AEF. Решение Поскольку отрезок PF виден из точек A и B под углом 45°, то точки A, P, F и D лежат на одной окружности, а так как ∠ADF = 90°, то AF – диаметр этой окружности. Следовательно, APF = 90° и FP – высота треугольника AEF. Аналогично EQ – высота треугольника AEF. Поэтому треугольник APQ подобен треугольнику AFE с коэффициентом cos∠EAF = cos 45°. Источники и прецеденты использования
|
||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|