ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Готман Э.Г.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 5]      



Задача 79264

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Трехгранные и многогранные углы (прочее) ]
Сложность: 4-
Классы: 10,11

У трёхгранного угла проведены биссектрисы плоских углов. Доказать, что попарные углы между биссектрисами либо одновременно тупые, либо одновременно прямые, либо одновременно острые.
Прислать комментарий     Решение


Задача 55397

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вспомогательная окружность ]
[ Отношение площадей подобных треугольников ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки E и F, причём  ∠EAF = 45°.  Отрезки AE и AF пересекают диагональ BD в точках P и Q.
Докажите, что  SAEF = 2SAPQ.

Прислать комментарий     Решение

Задача 53781

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.

Прислать комментарий     Решение

Задача 55526

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Хорда окружности удалена от центра на расстояние h. В каждый из сегментов, стягиваемых хордой, вписан квадрат так, что две соседние вершины квадрата лежат на дуге, две другие — на хорде. Чему равна разность длин сторон квадратов?

Прислать комментарий     Решение


Задача 55551

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5-
Классы: 8,9

Из вершины C прямого угла прямоугольного треугольника ABC проведена высота CD, и в треугольники ACD и BCD вписаны окружности с центрами P и Q. Общая внешняя касательная к этим окружностям пересекает катеты AC и BC в точках M и N, а высоту CD — в точке K. Докажите, что:

а) треугольники CMN и CBA подобны;

б) точки C, M, N, P и Q лежат на окружности с центром K, радиус которой равен радиусу вписанной окружности треугольника ABC.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .