ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.

Вниз   Решение


На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных.

Вверх   Решение

Задача 57411
Тема:    [ Неравенства с медианами ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Периметры треугольников ABM, BCM и ACM, где M — точка пересечения медиан треугольника ABC, равны. Докажите, что треугольник ABC правильный.

Решение

Пусть, например, BC > AC. Тогда MA < MB (см. задачу 10.1), поэтому  BC + MB + MC > AC + MA + MC.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 1
Название Медианы
Тема Неравенства с медианами
задача
Номер 10.003

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .