ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?

   Решение

Задача 108144
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Две пары подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В параллелограмме ABCD на сторонах AB и BC выбраны точки M и N соответственно, причём  AM = CN,  Q – точка пересечения отрезков AN и CM.
Докажите, что DQ – биссектриса угла D.


Подсказка

Пусть прямые AN и CD пересекаются в точке P. Докажите, что  DP : AD = PQ : AQ.


Решение

  Пусть прямые AN и CD пересекаются в точке P. Из подобия треугольников PNC и ANB следует, что  PQ : AQ = PC : AM = PC : CN.
  Из подобия треугольников PNC и PAD имеем  PC : CN = PD : AD.
  Поэтому  PD : AD = PQ : AQ,  то есть DQ – биссектриса треугольника ADP.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6494
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2001
Этап
Вариант 4
Класс
Класс 9
задача
Номер 01.4.9.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .