|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны числа а1, ..., аn. Для 1 ≤ i ≤ n положим d = MAX { di | 1 ≤ i ≤ n } а) Доказать, что для любых x1 ≤ x2 ≤ ... ≤ xn выполняется неравенство б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n |
Задача 73871
УсловиеНа плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.РешениеВозьмем на плоскости произвольную прямую l и спроецируем на нее все многоугольники. При этом мы получим несколько отрезков, любые два из которых имеют общую точку. Рассмотрим левые концы этих отрезков и выберем из них самый правый (чтобы стало ясно, что значит «правый» и «левый», на прямой нужно задать направление). Полученная точка принадлежит всем отрезкам, поэтому проведенный через нее перпендикуляр к прямой l пересекает все данные многоугольники.Источники и прецеденты использования
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|