ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL. Кресла для зрителей вдоль лыжной трассы занумерованы по порядку: 1, 2, 3, ..., 1000. Кассирша продала n билетов на все первые 100 мест, но n больше 100, так как на некоторые места она продала больше одного билета (при этом n < 1000). Зрители входят на трассу по одному.Каждый, подойдя к своему месту, занимает его, если оно свободно, если же занято, говорит "Ох!", идёт в сторону роста номеров до первого свободного места и занимает его. Каждый раз, обнаружив очередное место занятым, он говорит "Ох!". Докажите, что число "охов" не зависит от того, в каком порядке зрители выходят на трассу. Можно ли подобрать два многочлена P(x) и Q(x) с целыми коэффициентами так, что P – Q, P и P + Q – квадраты некоторых многочленов (причём Q не получается умножением P на число)? Одна под другой выписаны 2n–1 различных последовательностей из нулей и единиц длины n. Известно, что для любых трёх из выписанных последовательностей найдётся такой номер p, что в p-м разряде у всех трёх стоит 1. Доказать, что в некотором разряде у всех выписанных последовательностей стоит 1 и такой разряд только один. Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.) |
Задача 97895
УсловиеУлицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся? Решение 1Раскрасим кварталы-треугольники в шахматном порядке. Нетрудно проверить, что один из цветов всегда находится слева от автомобиля, а другой – справа. Но при встрече это невозможно. Решение 2Угол между направлениями движения машин всегда кратен 120°. Но 180° не кратно 120°. Решение 3Расставим на перекрёстках числа 1, 2, 3 так, как показано на рис. 1. ОтветНе может. Замечания4 балла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке