ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
На сторонах AB и BC параллелограмма ABCD выбраны точки A1 и C1 соответственно. Отрезки AC1 и CA1 пересекаются в точке P .
Описанные окружности треугольников AA1P и CC1P вторично пересекаются в точке Q , лежащей внутри треугольника ACD .
Докажите, что Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причем BM = 3AM и CN = 3AN. Докажите, что MN || BC и найдите MN, если BC = 12.
Можно ли четырьмя плоскостями разрезать куб с ребром 1 на части так, чтобы для каждой из частей расстояние между любыми двумя её точками было: На плоскости дан квадрат и точка Р. Могут ли расстояния от точки Р до вершин квадрата оказаться равными 1, 1, 2 и 3? Найти скорость и длину поезда, если известно, что он проходит мимо неподвижного наблюдателя в течение 7 секунд и затратил 25 секунд, чтобы проехать вдоль платформы длиной в 378 м. В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD. Вдоль дорожки между домиками Незнайки и Синеглазки росли в ряд цветы: 15 пионов и 15 тюльпанов вперемешку. Отправившись из дома в гости к Незнайке, Синеглазка поливала все цветы подряд. После 10-го тюльпана вода закончилась, и 10 цветов остались не политыми. Назавтра, отправившись из дома в гости к Синеглазке, Незнайка собирал для неё все цветы подряд. Сорвав 6-й тюльпан, он решил, что для букета достаточно. Сколько цветов осталось расти вдоль дорожки? В вершинах шестиугольника ABCDEF (см. рис.) лежали 6 одинаковых на вид шариков: в A — массой 1 г, в B — 2 г, ..., в F — 6 г. Шутник поменял местами два шарика в противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики переставлены? Пусть 2S – суммарный вес некоторого набора гирек. Назовём натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?
Докажите, что если треугольник не тупоугольный, то сумма трёх его медиан не меньше, чем учетверённый радиус описанной окружности.
Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части. |
Задача 64581
Условиеa) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны. б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа? Решениеа) Пусть Петя и Вася написали числа a, b и c. Попарные наибольшие общие делители этих чисел равны: это наибольший общий делитель d трёх чисел, задуманных Петей. С другой стороны, каждый такой попарный делитель делится на одно из чисел, задуманных Васей. Значит, d делится и на наименьшее общее кратное задуманных Васей чисел, которое равно НОК(a, b, c). Следовательно, НОК(a, b, c) = НОД(a, b, c), то есть a = b = c. б) Контрпример: если Петя задумал числа 6, 10, 15, 30, а Вася – числа 1, 2, 3, 5, то оба выпишут наборы 2, 3, 5, 6, 10, 15. Ответб) Не останется. Замечания1. Более общий контрпример: у Васи – четыре попарно взаимно простых числа a, b, c, d, у Пети – abc, abd, acd, bcd; в итоге оба напишут ab, ac, ad, bc, bd, cd. Вырожденный пример: у Васи – 1, 1, 1, 2, у Пети – 1, 2, 2, 2. 2. Баллы: 8-9 кл – 3 + 3, 10-11 кл. – 2 + 2. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке