ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
  б) А квадрат площади 1/2019?

Вниз   Решение


Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

ВверхВниз   Решение


Автор: Жуков Г.

Дана бесконечно возрастающая арифметическая прогрессия. Первые её несколько членов сложили и сумму объявили первым членом новой последовательности, затем сложили следующие несколько членов исходной прогрессии и сумму объявили вторым членом новой последовательности, и так далее. Могла ли новая последовательность оказаться геометрической прогрессией?

Вверх   Решение

Задача 32022
Темы:    [ Обход графов ]
[ Обходы многогранников ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В одной из вершин  а) октаэдра;  б) куба сидит муха. Может ли она проползти по всем его рёбрам ровно по одному разу и возвратиться в исходную вершину?


Решение

а) Пусть, A, B, C, A1, B1, C1 – вершины октаэдра, причём  (A, A1),  (B, B1)  и  (B, B1) – пары противоположных вершин. Тогда любая пара вершин, кроме этих трёх, соединяется ребром. Путь мухи может быть следующим:  ABA1C1BCAC1B1CA1B1A  (см. рис.)

б) В каждой из восьми вершин куба сходится по три ребра. Это означает, что степень каждой вершины полученного графа нечётна, значит, путешествие совершить невозможно.


Ответ

а) Может;  б) не может.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 05
Дата 1982
задача
Номер 03

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .