|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке? Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным. Выведите из неравенства задачи 61401 а) неравенство Коши-Буняковского: б) неравенство между средним арифметическим и средним
квадратичным: в) неравенство между средним арифметическим и средним
гармоническим: |
Задача 53255
УсловиеОкружность проходит через вершины A и C треугольника ABC , пересекая сторону AB в точке E и сторону BC в точке F . Угол AEC в 5 раз больше угла BAF , а угол ABC равен 72o . Найдите радиус окружности, если AC = 6 .РешениеОбозначимПо теореме о внешнем угле треугольника Центр окружности, описанной около прямоугольного треугольника AEC , — середина гипотенузы AC , поэтому радиус окружности равен половине AC , т.е. 3. Ответ3.Источники и прецеденты использования
|
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|