|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет? Незнайка рисует замкнутые пути внутри прямоугольника 5×8, идущие по диагоналям прямоугольников 1×2. На рисунке изображён пример пути, проходящего по 12 таким диагоналям. Помогите Незнайке нарисовать путь как можно длиннее. |
Задача 65526
УсловиеКаждая боковая грань пирамиды является прямоугольным треугольником, в котором прямой угол примыкает к основанию пирамиды. В пирамиде проведена высота. Может ли она лежать внутри пирамиды? Решение Пусть основанием пирамиды SA1...An является многоугольник A1...An (см. рисунки). Возможны два случая. Записав аналогичные неравенства для каждой боковой грани, получим SA1 > SA2 > ... > SAn > SA1, то есть SA1 > SA1. Противоречие. Таким образом, внутри данной пирамиды высота лежать не может. ОтветНе может. Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|