Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

AB и A1B1 — два скрещивающихся отрезка. O и O1 — соответственно их середины. Докажите, что отрезок OO1 меньше полусуммы отрезков AA1 и BB1.

Вниз   Решение


Один из четырёх углов, образующихся при пересечении двух прямых, равен 41°. Чему равны три остальных угла?

ВверхВниз   Решение


Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?

Вверх   Решение

Задача 61109
Темы:    [ Тригонометрия (прочее) ]
[ Многочлены Чебышева ]
Сложность: 3+
Классы: 10,11
В корзину
Прислать комментарий

Условие

При подстановке в многочлены Чебышёва (см. задачу 61099) числа  x = cos α  получаются значения

 

Что будет, если в многочлены Чебышёва подставить число  x = sin α?


Подсказка

sin α = cos (α – π/2).


Ответ

Если  n = 2k,  то  

Если  n = 2k + 1,  то  

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 7
Название Комплексные числа
Тема Неизвестная тема
параграф
Номер 1
Название Комплексная плоскость
Тема Неизвестная тема
задача
Номер 07.045

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .