Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

На прямой отметили точки $X_1, \ldots, X_{10}$ (именно в таком порядке) и построили на отрезках $X_1X_2$, $X_2X_3$, ..., $X_9X_{10}$ как на основаниях равнобедренные треугольники с углом $\alpha$ при вершинах. Оказалось, что все эти вершины лежат на полуокружности с диаметром $X_1X_{10}$. Найдите $\alpha$.

Вниз   Решение


Для всякого ли выпуклого четырёхугольника найдётся окружность, пересекающая каждую его сторону в двух внутренних точках?

ВверхВниз   Решение


Автор: Фольклор

На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что  ВС1 = С1А1 = А1В1 = В1С.
Докажите, что точка пересечения высот треугольника С1А1В1 лежит на биссектрисе угла А.

ВверхВниз   Решение


Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).

ВверхВниз   Решение


При повороте треугольника KLM на угол 120° вокруг точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ.

ВверхВниз   Решение


Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.

ВверхВниз   Решение


Автор: Ботин Д.А.

48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на 1 подкову 5 минут? (Лошадь не может стоять на двух ногах.)

Вверх   Решение

Задача 103731
Темы:    [ Арифметика. Устный счет и т.п. ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7
Из корзины
Прислать комментарий

Условие

Автор: Ботин Д.А.

48 кузнецов должны подковать 60 лошадей. Какое наименьшее время они затратят на работу, если каждый кузнец тратит на 1 подкову 5 минут? (Лошадь не может стоять на двух ногах.)


Подсказка

Сначала решите задачу для четырёх кузнецов и пяти лошадей.


Решение

Задача состоит из двух частей: доказать, что за 25 минут управиться можно, и доказать, что быстрее выполнить работу нельзя. Начнём со второй части.

Всего у 60 лошадей 240 копыт. Если бы всю работу делал один кузнец, то ему бы потребовалось 240×5 = 1200 минут. Значит, 48 кузнецов никак не смогут выполнить всю работу быстрее, чем за 1200 : 48 = 25 минут.

Покажем теперь, как можно подковать всех лошадей за 25 минут. Разобьём кузнецов на 12 бригад по 4 кузнеца в каждой и выделим каждой бригаде по 5 лошадей. Каждая бригада сможет подковать ''своих'' лошадей за 25 минут следующим образом. Организуем конвейер, назначив каждого кузнеца ''ответственным'' за определённую ногу лошади.

Первые пять минут первый кузнец подковывает переднюю правую ногу первой лошади, второй — переднюю левую второй лошади, третий — заднюю правую третьей, четвёртый — заднюю левую четвёртой, а пятая лошадь отдыхает.

Затем сдвигаем лошадей ''по кругу''. Вторые пять минут первый кузнец подковывает переднюю правую ногу пятой лошади, второй — переднюю левую первой лошади, третий — заднюю правую второй, четвёртый — заднюю левую третьей, а четвёртая лошадь отдыхает.

Третьи пять минут первый кузнец подковывает переднюю правую ногу четвёртой лошади, второй — переднюю левую пятой лошади, третий — заднюю правую первой, четвёртый — заднюю левую второй, а третья лошадь отдыхает.

Продолжив работу по этой схеме, каждая бригада подкуёт ''своих'' лошадей за 25 минут, а, значит, 48 кузнецов подкуют 60 лошадей за 25 минут.


Ответ

25 минут.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 1990
класс
1
Класс 5
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .